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spherical wave. It enables faster calculations with much 
higher accuracy. 

This becomes absolutely necessary when one is 
interested in the study of the direct image. As will be 
explained in another paper, it permits the real width of 
the X-ray beam incident on the crystal to be taken into 
account and one may now obtain simulations of very 
high quality. 

We can already announce that the VSA is accurate 
enough to allow the simulation of traverse topographs. 
The work is in progress and the first results are very 
satisfactory. 

Most of the tests were done at the IBM J. J. Watson 
Research Center in Yorktown Heights during time 
spent as a 'World Trade Scientist Visitor'. 

I would like to thank A. Soyer for the final 
debugging of the corresponding simulation program. 
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Abstract 

Experimental topographs may be simulated by addition 
of simulations where one point source is lit on the 
surface of the crystal. The accuracy of a varying-step 
integration of Takagi equations is good enough to allow 
such computations. It is shown that all parts of the 
contrast are sensitive to the width of the entrance slit 
and that accurate characterization of defects must take 
this parameter into account. 

Introduction 

X-ray topography (Lang, 1959) is a very/useful tool for 
studying the perfection of crystalline materials. The 
most widely used method, translation topography, 
allows the characterization of a large volume of the 
crystal in a single experiment. 

0108-7673/83/050767-06501.50 

Section topography allows a much more precise 
study of the defects but the experiment is rather delicate 
and only a small volume of the material is charac- 
terized in one experiment. The quality of the experi- 
mental setting, especially the width and parallelism of 
the entrance slit of the camera, become very important 
and these parameters should be taken into account in 
all theoretical and experimental studies. Usually the 
width of the entrance slit, limiting the incoming beam 
falling on the crystal, is of the order of 10 lam in section 
topographs and may be increased to values of the order 
of 100 ~rn or more in traverse topography. 

It is well known that the quality and number of 
extinction fringes visible in a section topograph depend 
not only on the perfection of the crystal but also on the 
accuracy of the setting and on the width of the 
incoming beam. The narrower the slit is, the greater 
will be the number of observable fringes. Of course this 
is limited by the intensity of the X-ray beam! 
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In theoretical studies of the contrast the use of 
simulations is now a very important method for 
understanding the image and fully characterizing the 
defects. For instance, it is possible to determine the 
direction and magnitude of the Burgers vector of a 
dislocation (Epelboin, 1974) and to characterize 
ferromagnetic walls (Nourtier, Kleman, Taupin, Miltat, 
Labrune & Epelboin, 1979) or planar defects (Capelle, 
Epelboin & Malgrange, 1982). 

As will be explained later, simulations are computed, 
in most cases, by simulating one point source on the 
entrance surface of the crystal; the accuracy of the 
numerical integration does not allow the real experi- 
mental width of the incoming beam to be taken into 
account. Recently, new algorithms using a varying 
integration step have been developed (Petrashen, 1976; 
Epelboin, 1981) and their accuracy allows this experi- 
mental factor to be taken into account. 

First, we will discuss the approximation of the 
incident spherical wave and its extension to real 
experiments. Then we will briefly recall the basic 
principles of simulations using a varying integration 
step. In the third part we will show through some 
examples of silicon and quartz how the width of the 
entrance slit modifies the contrast of a dislocation and 
how, taking this point into account, it is possible to 
simulate section topographs with very high accuracy. 

I. Theoret ical  cons iderat ions  

1. Classification of the various topographic settings 

From the theoretical point of view we may consider 
three kinds of topographic settings: 

(a) The source is a point source situated on the 
entrance surface of the crystal and may be expressed as 
a Dirac distribution. 

(b) The source is a plane wave and thus its lateral 
extension is infinite. 

(c) Traverse topography, which may be obtained 
either by scanning the point source along the surface of 
the crystal or by giving all possible orientations to a 
plane wave along the rocking curve of the reflection. 

In the first two cases the amplitude distributions are 
Fourier transforms, thus the integrated intensity (c) is 
identical in both cases. In real experiments (a) and (b) 
do not exist and may be obtained approximately by 
using either a narrow slit (a) (Fig. 1) or a special setting 
in order to obtain a wave with a large lateral extension 
and a very limited angular distribution (multiple-crystal 
topography, synchrotron topography). 

The incident wave may be approximated as a plane 
wave if fi >> .O, where fi is the width at half maximum of 
the rocking curve. -Qo may be approximated as the 
geometrical width of the incident beam. Using an 
entrance slit 10 gm wide means that -Q0 ~- 2.5 x 10 -4 
rad and fi is of the order of 10 -5 rad. 

Thus the approximation of the plane wave can never 
be justified for section topography. 

A second condition is t h a t f ~  s, wherefis  the width 
where the phase of the incident wave may be 
considered as constant along the entrance surface and s 
the effective crystal size, i.e. the length along the 
surface where the crystal can accommodate the 
divergence of the incident beam. s ~_ Lfi, where L is of 
the order of 0.4 m, the distance from the focal point to 
the crystal in most cameras, f is of the order of the 
width of the first Fresnel zone, i.e. f ~ 2 (2 L) m. This 
leads to the following relation: 

2(2/L) 1/2 ~ c~, 

in order to approximate the incident wave as a plane 
wave. This is very seldom true. Thus we may always 
assume that the incident wave is a spherical wave of 
limited lateral extension. 

Very recently Aristov, Kohn, Polovinkina & Snigirev 
(1982) studied the validity of Kato's approximation. 
Taking into account both the spectral width of the 
incident beam and the finite width of the incoming 
beam they have shown that for the usual topographic 
setting the non-monochromaticity and the dimensions 
of the focus are the reasons why Kato's theory is valid. 
Each point of the entrance surface of the crystal acts as 
an elementary source of spherical waves and the 
intensity distribution along the exit surface is the 
summation of all intensities coming from all these 
sources acting incoherently. The distance L between 
the focus and the crystal appears only as a constant 
factor which may be taken into account in the normal- 
ization of the intensities. L remains an important factor 
in the geometrical resolution of the experiment only. 

~ ocus 100 grn 

\~\ 

,i j S l i t  10 grn 

I fi ~ 

J,i,  )1"1, 

2. The approximation of the point source (Kato, 1961) 

Let X20 be the angle in which the angular spectrum of 
the coherent incident wave takes an appreciable value. 

, /  

Fig. 1. Principle of section topograph using a limited incident beam. 
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3. Boundary conditions along the entrance surface 

Let us recall the well-known Takagi-Taupin 
equations (Takagi, 1962; Taupin, 1964): 

~So 

~s h 

- -  D0(r) = - i n k  zhDh(r) 

- -  Dh(r) = --inkZhDo(r) 

- 2i n k - -  g. u(r)Dh(r), 
c3s h 

where ,~h and Zh are the Fourier components of the 
dielectric susceptibility, g is the reciprocal-lattice vector 
corresponding to the reflection and u(r) is the local 
deformation inside the crystal. 

The boundary conditions along the surface ~ may be 
written as: 

D o ( ~ = D a ( O  
Dh(¢~) = 0 

c~D° (~) = 0 
c0s 0 

C3Dh (¢)= --i7~ ZhDa(~) , 
c3s h 

where Da(O is the amplitude distribution of the incident 
wave along the surface. 

II. N u m e r i c a l  i n t e g r a t i o n  o f  T a k a g i - T a u p i n  e q u a t i o n s  

1. Integration algorithm 

In the numerical integration the partial-derivative 
equations are replaced by a step-by-step integration. 

Using the half-step derivative method (Authier, 
Malgrange & Tournarie, 1968) the integration is 
performed along a network of characteristics parallel to 
the transmitted and reflected directions s o and s h. The 
values of the amplitudes D O and D h of the waves at a 
given point A depend upon the values at points B and C 
in the integration network (Fig. 2). 

P 

Fig. 2. Principle of the numerical integration. 

The first program written to integrate Takagi- 
Taupin equations used constant steps p and q along 
both characteristics (Authier et al., 1968). This means 
that the distances AB and A C are fixed before the 
computation according to some rules which have been 
discussed in another paper (Epelboin, 1977): 

- The steps p and q must be small enough to take 
into account the oscillations of the wave fields, 
especially near the edges of the Borrmann fan. 

- p  and q must be large enough to avoid numerical 
errors due to the half-step derivative method and to the 
limited precision of the computer. Moreover, since the 
computation time is proportional to  l ip  2 and 1/q 2 it is 
necessary to choose the steps as big as possible. 

In practice, it is not possible to take into account the 
rapid changes of the wavefields near the edges of the 
Borrmann fan and the intensity due to wavefield 
interaction in these areas is strongly underestimated. 
This is not important when one is only interested in the 
general features of the image but becomes intolerable 
when one takes into account the' finite size of the 
entrance slit. 

Petrashen (1976) and Epelboin (1981) have sug- 
gested using an integration network where the steps p 
and q vary. The difficulty is to find a method which 
allows these steps to change inside the Borrmann fan. 
Petrashen suggests decreasing them near the edges of 
the fan. Epelboin uses a more sophisticated method 
based on the following idea. 

The ideal solution would be to use a finite element 
method: at each point of the calculation p and q would 
be chosen according to the local variations of the wave 
amplitudes. Unfortunately this would need tremendous 
computation time, which means that the network must 
be known before starting the integration. 

The network is thus chosen for an asymptotic 
solution, i.e. the perfect crystal; we compute the 
position of the following zeros of the J0 Bessel function 
(amplitude of the D h wave) along the exit surface. Then 
the position of the nodes is chosen so that a minimum 
number of points is used to describe the oscillation of 
this function between two zeros. From these points we 
draw characteristic lines as shown in Fig. 3. The 
density of nodes is greater near the edges where the 
wave amplitudes vary rapidly and decrease in the 
middle of the fan where they change slowly. In the 
areas where the dislocation interacts with the refracted 
beam the density of nodes may be increased. A 
complete comparison of the varying step algorithm 
(VSA) versus the constant step algorithm (CSA) is 
given by Epelboin (1983). 

2. Boundary conditions 

According to Aristov et al. (1982) boundary 
conditions along the entrance surface may be simu- 
lated by the addition of elementary section topographs, 
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each corresponding to one point source sited along the 
surface. This corresponds to Kato's theory. 

The number of elementary section topographs 
needed to simulate the finite width of the incoming 
beam is determined by the resolution of the calculation. 
If A is the distance between two successive calculated 
points along the exit surface this must be the distance 
between the different simulations (Fig. 4a). 

However, one difficulty appears: the distance be- 
tween two computed points is not constant. To avoid 
this problem the array of computed intensities is 
increased: by interpolation intermediate points are 
calculated so that the distance between two successive 
points becomes Amtn, this being the minimum hori- 
zontal distance between two nodes in the integration 
network (Fig. 3). In a second step the number of points 
is decreased by an apodisation scheme so that the 
resolution becomes A along the exit surface: a given 
number of points is added two by two. This is repeated 
many times so as to replace all the points by only one. 
Then a new packet of points is added in the same 
manner. Two successive computed intensities are not 
completely independent: two successive packets 
possess half of their information in common. This 

permits a better simulation of the photographic process 
where neighbouring grains influence each other. This 
may be explained in a drawing (Fig. 5), each horizontal 
line in the triangles representing one level of addition. In 
this example the information is reduced by a factor of 
three. Thus the distance between two points becomes A 
= 3 x dml n. For example, in most simulations Zlml n = 

0.2 lam. Using an apodisation factor of four means that 
the resolution will be 0.8 lam. This will also be the 
distance between two successive sources along the 
entrance surface. The number of added elementary 
simulations depends upon the width of the entrance slit 
and the requested resolution. 

This must not be confused with the simulation of a 
plane-wave topograph where in the same calculation a 
great number of sources emit coherently along the 
entrance surface (Fig. 4b). 

III. Study of the influence of the entrance slit 

1. The different parts of an image 

Authier (1967) distinguishes three parts in the image 
of a defect (Fig. 6): the direct image which appears 
whenever the defect intercepts the refracted beam, the 
dynamical image which is the shadow of the defect and 
the intermediary image, rather complex, which corre- 
sponds to the interference pattern of all wave fields of 
which the paths have been disturbed or diffracted by 
the deformation of the crystal. 

_ h 

Fig. 3. Integration network for VSA algorithm. The density of 
knots may be increased in the areas from which the direct image 
originates. 

I 2 3 

" 3 ' ' ,  

(a) (b) 

Fig. 4. (a) Principle of the simulation of extended section 
topographs. Single simulations are added. (b) Principle of the 
simulation of a plane-wave topograph. One simulation using an 
extended wave along the entrance surface. 

i I = spst 2 = . . . . .  

. . . . .  s_t+~ _~ , 
1 2 

Fig. 5. Summation of the calculated intensities along the exit 
surface. A given number of points is added two by two and the 
process is repeated for n steps to reduce the information to one 
point. This is repeated for a new packet of points, taking half of  
the information in common. 

Fig. 6. Principle of the formation of the image of a defect: 1 direct 
image; 2 dynamical image; 3 intermediary image. 
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When a dislocation lies parallel to the surface the 
intermediary image is not clearly visible; when it is 
inclined this image appears as a set of fringes roughly 
perpendicular to the dynamical image. This is clearly 
visible in the topographs shown in Figs. 7(a) and 8(a). 

Fig. 7(a) is the image of an inclined dislocation in a 
silicon wafer. It has been described by Authier (1967). 
Fig. 8(a) is the topograph of dislocation in quartz 
(Epelboin & Patel, 1982). The corresponding simu- 
lations have been computed for various widths of the 
entrance slit: Figs. 7(b) and 8(b) lighting with one point 
source only as is usually done in simulations, Figs. 7(c) 
and 8(c) simulating an incoming beam 3 lam wide, Figs. 
7(d) and 8(d) with a slit 9 lam wide. 

2. Study of the background 
It is well known that the number of visible extinction 

fringes is unrealistic in simulations. When taking into 
account the finite width of the entrance slit, their 
number may be reduced as shown in the simulations. 
An elementary simulation corresponds to Kato's theory 
and the number of computed fringes is in agreement 
with it, but in a real experiment their contrast is 
blurred, due to the addition of all the intensities 
corresponding to all the incoherent sources along the 
entrance surface. Since the width of the fringes 
decreases near the edges of the section topograph, 
fringes remain visible in the centre of the image only. 

This is a good way to check the real width of the 
entrance slit of a camera and we have been able to do 
this by comparison of a set of simulations with real 
experiments: Fig. 8(d) shows that the topograph has 
been taken with an incident beam with a width of about 
10 lam. This is not so clearly visible in Fig. 7 but a 
certain degree of imperfection in the crystal (additional 
stresses, microdefects, etc.) might be the reason. 

3. Study of the direct image 

In Fig. 7 the direct image is rather small because the 
crystal is deformed in a small volume only around the 
core of the dislocation. This is not true in Fig. 8 and has 
been studied in a previous paper (Epelboin & Patel, 
1982). 

The set of simulations show that the size of this 
image is sensitive to the width of the beam. Fig. 8(d) 
demonstrates that a detailed study of this part of the 
contrast cannot be done without taking this factor into 
account. 

In some cases it might become possible to determine 
the direction and magnitude of the Burgers vector of a 
dislocation by its study only. 

4. Study of the dynamical image 

Strictly speaking, any part of the contrast results 
from the convolution of the image given by one point 

(a) (b) 

(c) (d) 
Fig. 7. Section topograph of a dislocation; Si, Mo Ka, 220, 800 

thick: (a) experiment; (b) one point source; (e) slit 9 ~m (addition 
of 5 single simulations); (d) slit 1"/.6 ~m (addition of 11 single 
simulations). 

IIuHjII!iI' '!'' 
(a) (b) 

i. 

(c) (d) 

Fig. 8. Section topograph of a dislocation; quartz Ag Kct, 01T2 
(see Epelboin & Patel, 1982): (a) experiment; (b) one point 
source; (c) slit 6 ~tm (addition of 5 single simulations); (d) slit l0 
lam (addition of 5 single simulations). 
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source with the distribution along the entrance surface. 
In the case of the dynamical image it is not as easy as 
for the direct image to predict whether it will be 
increased or decreased. Figs. 7(c) and (d) show, for 
instance, that the image may be slightly larger when the 
width of the entrance slit increases, on the contrary, 
Fig. 8 shows the opposite. This is due to the balance 
between black and white when summing all single 
topographs and no prediction may be made. The 
computed image is smaller than the real one. An 
explanation could be that additional stresses exist such 
as a slight decoration of the dislocation which would 
increase the size of the deformed areas in the crystal 
and thus the size of dynamical image. Since no 
intermediary image exists it is difficult to draw a 
conclusion. 

5. Study of the intermediary image 
The intermediary image contains a large portion of 

the information; its system of fringes is very sensitive to 
the distribution of the stresses in the Borrmann fan and 
its study permits a very accurate evaluation of the 
parameters of the defect. Unfortunately, it is not easy 
to interpret! 

Fig. 7 is a good example. The simulation shown in 
Fig. 7(b) is not very satisfactory for this part of the 
contrast: fiat fringes appear at the bottom of the image 
and the intensity of those parallel to the dynamical 
image is not strong enough. 

In the series of simulations these effects vanish: the 
flat fringes are blurred and the contrast of the fringes 
parallel to the dynamical image is reinforced. The 
simulation in Fig. 7(c) corresponds to an entrance slit 9 
~xrn wide. The difference between the simulation and the 
experiment suggests the use of an entrance slit larger 
than expected as shown in Fig. 7(d) where the size of 
the entrance slit is 17.6 v-m, which is slightly more in 
agreement with the experiment. 

Moreover, we simulate a perfect dislocation in a 
perfect crystal for a theoretical setting. This of course 
never happens in real experiments and may explain 
some discrepancies. 

Conclusion 

These examples show that the real width of the 
entrance slit has to be taken into account for precise 
simulations of section topographs. As is already known 
from experiment the features of the image are very 
sensitive to this factor. The use of a one-point source, 
although satisfactory for an ordinary characterization 

of a defect, becomes insufficient when one is interested 
in a detailed study of the contrast. It also shows the 
limitation of Kato's theory, in the study of real 
contrasts. 

On the other hand, two difficulties appear: 
(a) the integration of Takagi-Taupin equations must 

be done using a varying-step algorithm, otherwise the 
inaccuracy of the calculation would give false results; 

(b) the computation time is increased since many 
single simulations must be added. 

This limiting factor is not crucial. The varying-step 
algorithm is faster than the old constant-step algorithm. 
The utilization of modern computers speeds up the 
calculation. An image such as the one shown in Fig. 
7(c) which corresponds to the addition of five single 
simulations may be computed in less than 40 min, using 
a microcomputer MINI6/53 CII-HB (comparable in 
speed to a DEC 11-70) linked to a FPS 100 array 
processor. The final image is thus obtained in a shorter 
time than that needed for a single simulation using an 
IBM 370/168. 

In the future, detailed studies of real topographs 
using such simulations may permit one to overcome the 
physical limitation due to the geometrical resolution of 
photographic emulsions and allow a better charac- 
terization of large volumes of crystalline materials. 

Part of this work was done at the IBM T. J. Watson 
Research Center (Yorktown Heights, USA). One of us 
(YE) is greatly indebted to IBM World Trade and IBM 
France for a grant. 

We thank F. Morris and A. Soyer for help in the use 
of the array processor. 
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